Worksheet for Sections 8.7 and 9.1

1. Explain why, and where, the following integrals are improper.

a.
$$\int_0^{\pi} \frac{\sin x}{\sqrt{1+\cos x}} dx$$
 b. $\int_0^{\pi/2} \sec^2 \theta \, d\theta$ c $\int_1^{\infty} \frac{1}{x(x+1)} dx$ d $\int_1^{\infty} \frac{1}{t^2 - 2t + 1} dt$

2. Suppose that f is a differentiable function with the following graph:

Determine which of the following integrals converge, and evaluate any that does converge.

a.
$$\int_{-\infty}^{0} f'(x) dx$$
 b. $\int_{0}^{\infty} f'(x) dx$ c. $\int_{-\infty}^{\infty} f'(x) dx$

3. (a) From (1) on p. 569, the Taylor polynomial p_5 for a function f is given by

$$p_5(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + \frac{f^{(5)}(0)}{5!}x^5$$

w that $p_5^{(5)}(0) = f^{(5)}(0)$.

- (b) Let a, b, and c be nonzero constants, and let $f(x) = ax^2 + bx + c$ for all x. Write down formulas for the polynomials p_2 and p_4 , and explain how you arrived at them.
- 4. Let $f(x) = \sin x$. We want to find $p_8(x)$.

Sho

- (a) Find f'(x) and f'(0), f''(x) and f''(0), ..., $f^{(8)}(x)$ and $f^{(8)}(0)$.
- (b) Using (a) and (1) on p. 569, write down $p_0(x), p_1(x), \ldots, p_8(x)$.
- (c) What pattern do you see in your answer to (b)?
- (d) On your graphing calculator (or computer), plot together the graphs of $p_0(x), p_1(x), p_3(x)$ and $p_8(x)$, along with the graph of the sine function f, and describe the relationship between the graphs of these 4 Taylor polynomials and graph of f
- (e) Using the result of (c), write down the term with highest degree of x in each of the following:

(i) $p_{34}(x)$ (ii) $p_{51}(x)$ (iii) $p_{99}(x)$